首页> 外文OA文献 >Distributed Detection Fusion via Monte Carlo Importance Sampling
【2h】

Distributed Detection Fusion via Monte Carlo Importance Sampling

机译:蒙特卡罗重要性抽样的分布式检测融合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Distributed detection fusion with high-dimension conditionally dependentobservations is known to be a challenging problem. When a fusion rule is fixed,this paper attempts to make progress on this problem for the large sensornetworks by proposing a new Monte Carlo framework. Through the Monte Carloimportance sampling, we derive a necessary condition for optimal sensordecision rules in the sense of minimizing the approximated Bayesian costfunction. Then, a Gauss-Seidel/person-by-person optimization algorithm can beobtained to search the optimal sensor decision rules. It is proved that thediscretized algorithm is finitely convergent. The complexity of the newalgorithm is $O(LN)$ compared with $O(LN^L)$ of the previous algorithm where$L$ is the number of sensors and $N$ is a constant. Thus, the proposed methodsallows us to design the large sensor networks with general high-dimensiondependent observations. Furthermore, an interesting result is that, for thefixed AND or OR fusion rules, we can analytically derive the optimal solutionin the sense of minimizing the approximated Bayesian cost function. In general,the solution of the Gauss-Seidel algorithm is only local optimal. However, inthe new framework, we can prove that the solution of Gauss-Seidel algorithm issame as the analytically optimal solution in the case of the AND or OR fusionrule. The typical examples with dependent observations and large number ofsensors are examined under this new framework. The results of numericalexamples demonstrate the effectiveness of the new algorithm.
机译:具有高维有条件依赖观测的分布式检测融合是一个具有挑战性的问题。当固定了融合规则后,本文尝试通过提出新的蒙特卡洛框架,针对大型传感器网络在此问题上取得进展。通过蒙特卡洛重要性采样,我们在最小化近似贝叶斯成本函数的意义上得出了最佳传感器决策规则的必要条件。然后,可以获得高斯-塞德尔/逐人优化算法以搜索最佳传感器决策规则。证明了离散算法是有限收敛的。与先前算法的$ O(LN ^ L)$相比,新算法的复杂度为$ O(LN)$,其中$ L $是传感器的数量,$ N $是一个常数。因此,提出的方法使我们能够设计具有一般高维相关观测的大型传感器网络。此外,一个有趣的结果是,对于固定的AND或OR融合规则,我们可以从最小化近似贝叶斯成本函数的意义上分析得出最优解。通常,Gauss-Seidel算法的解仅是局部最优的。然而,在新的框架中,我们可以证明高斯-塞德尔算法的解与“与”或“或”融合规则情况下的解析最优解相同。在这种新的框架下,研究了具有相关观察结果和大量传感器的典型示例。数值例子的结果证明了新算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号